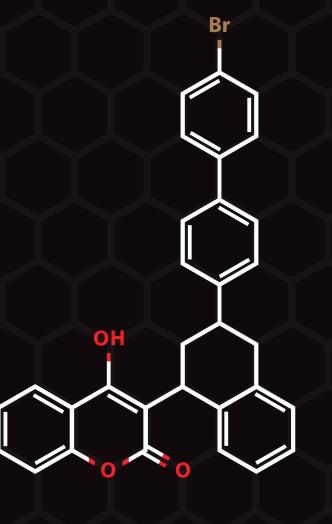


The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource:


Document Title:	Superwarfarin Toolkit
Author(s):	Hiu Yu Lam, MS, Tais R. Fiorentin, Ph.D., Francis X. Diamond, BS, Amanda L.A. Mohr, MS, Barry K. Logan, Ph.D.
Document Number:	305947
Date Received:	February 2023
Award Number:	2019-DU-BX-0020

This resource has not been published by the U.S. Department of Justice. This resource is being made publicly available through the Office of Justice Programs' National Criminal Justice Reference Service.

Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Cfsre Superwarfarin Toolkit

June 2022

ACKNOWLEDGEMENTS:

This report was prepared by Hiu Yu Lam, MS; Tais R. Fiorentin, PhD; Francis X. Diamond, BS; Amanda L.A. Mohr, MS; Barry K. Logan, PhD.

The project was supported by Award No. 2019-DU-BX-0020, by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/program/exhibition are those of the author(s) and do not necessarily reflect those of the Department of Justice.

©2022 The Center for Forensic Science Research & Education

Superwarfarin Introduction	1
Chemical Structures of Anticoagulant Drugs	2
Test Results for Anticoagulant Drugs and Commercial Products	4
Analytical Method: Dye Analysis in Commercial Rodenticide Products	17
Analytical Methods: Qualitative Screening for Seized Material	18
Sample Preparation: Seized Material	21
Analytical Methods: Qualitative Screening for Biological Matrices	22
Sample Preparation: Screening, Biological Matrices	23
Analytical Methods: Confirmation in Biological Matrices	24

PURPOSE: The Superwarfarin Toolkit is a consolidation of our grant research outcomes into a comprehensive document detailing relevant information about the characterization of anticoagulant compounds.

This toolkit includes basic drug information, chemical structure, clinical effects, forensic casework regarding anticoagulant, methods for identification and confirmation, and much more. This toolkit is designed to serve as a one-stop resource for scientists and interested individuals looking for all-inclusive information about anticoagulant compounds.

ABOUT US: The Center for Forensic Science Research and Education (CFSRE, Willow Grove, PA) is a non-profit organization that operates a state-of-the-art laboratory with a mission to advance forensic science testing and knowledge. In 2019, the National Institute of Justice had awarded and funded this project entitled "Identification of Anticoagulant Adulterants in Seized Material and Biological Samples."

To date, the assessment of current methods in seized materials have been performed, as well as development of new, unique screening and confirmation methodologies for anticoagulant compounds.

*CFSRE welcomes collaborative partnerships with engaged agencies and communities impacted by anticoagulant related cases. Individuals can contact our program to learn more about anticoagulants, our advanced testing capabilities, to request information regarding sample submissions, and/or to join our growing dissemination networks.

PURPOSE: The objective of this announcement is to notify public health and safety, law enforcement, first responders, clinicians, medical examiners and coroners, forensic and clinical laboratory personnel, and all other related communities about the adulteration of synthetic cannabinoid material with anticoagulants.

BACKGROUND: Warfarin and superwarfarins are anticoagulant agents widely used in commercial rodenticides and in the treatment of bleeding disorders. The major compounds of the class include brodifacoum, bromadiolone and difenacoum, all of which have a history of involvement in many types of forensic casework such as suicides, homicides, and accidental and deliberate poisonings. They have also been identified as potential chemical terror agents. Currently, these anticoagulant compounds are not regulated nor controlled within the United States. Individuals can purchase these compounds within United States or purchase overseas and import into United States without restriction. Toxic clinical effects of anticoagulant exposure include spontaneous internal and external bleeding, and can lead to death. Due to these anticoagulant drugs' dramatic effects, toxicity, long half-life, as well as the difficulty of diagnosing and treating patients, the adulteration of seized drug material with anticoagulants is a serious public health concern.

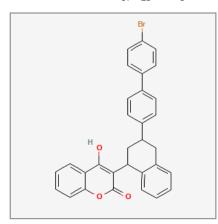
Recently, these substances have emerged as toxic adulterants in synthetic cannabinoid, cocaine and marijuana casework, and have led to hundreds of hospitalizations and several deaths in the United States. In 2018 in Chicago, Illinois, there was an outbreak involving a large number of synthetic cannabinoids laced with brodifacoum. More than 150 individuals that consumed these laced synthetic cannabinoid products were hospitalized with the presence of coagulopathy and bleeding symptoms, and five individuals died from major bleeding events. A similar anticoagulant outbreak occurred at Tampa, Florida in December 2021, which resulted in more than 50 individuals hospitalized and two deaths.

GOALS AND OBJECTIVE: With the support of the National Institute of Justice, the CFSRE performed a study gap analysis involving a systematic evaluation of current routine approaches to the examination and characterization of anticoagulant-containing materials, including commercial baits used in rodent control, anticoagulant laced/ adulterated street drugs, and the development of workflows for screening and confirmation/quantitation of the drugs in toxicological samples for ten common anticoagulant chemicals available in the United States. Provided in this toolkit are practical analytical approaches and resources for the analysis of anticoagulant adulterants in forensic casework for forensic laboratories with a range of resources and technology.

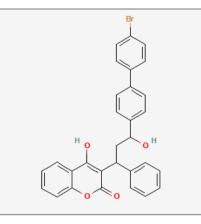
RECOMMENDATIONS FOR PUBLIC HEALTH:

- Implement surveillance for rapid identification of anticoagulant drug overdose outbreaks.
- Engage local poison centers and clinicians to assist with treatment of affected patients.
- Track and monitor geographical drug laced with anticoagulant compounds distribution and trends.
- Track demographics and known risk factors for decedents and overdose patients.
- Raise awareness about the risks and dangers associated with toxic anticoagulant adulteration.

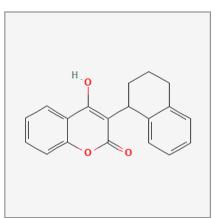
RECOMMENDATIONS FOR LABORATORIES:

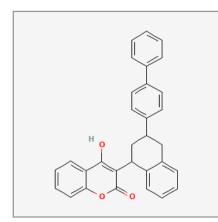

- Utilize analytical data available publicly for the identification of anticoagulant compounds if reference standards are not available.
- Develop a sensitive and selective testing procedure/ methodology for anticoagulant drugs.
- Prioritize analytical testing of seized materials or toxicology samples obtained from overdoses that are suspected to be anticoagulant related for investigations.
- Share data on outbreaks associated with drug products being laced with anticoagulant drugs with local health department, medical examiners, and related

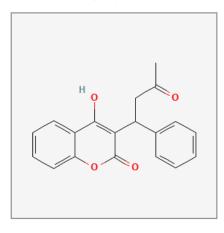
communities. This resource was prepared by the author(s) using Federal funds provided by the U.S. Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

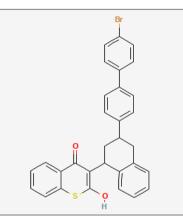

necessarily reflect the official position or policies of the U.S. Department of Justice.

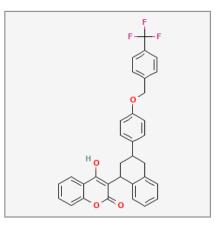
CHEMICAL STRUCTURES | COUMARIN CLASS


Brodifacoum C₃₁H₂₃BrO₃

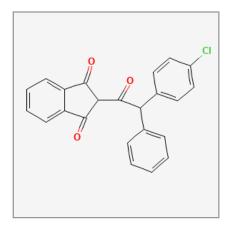

Bromadiolone C₃₀H₂₃BrO_a


Coumatetralyl C₁₉H₁₆O₃

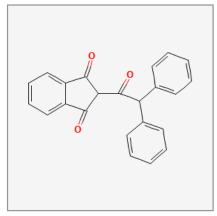

 $Difenacoum \ C_{_{31}}H_{_{24}}O_{_3}$


Warfarin $C_{19}H_{16}O_4$

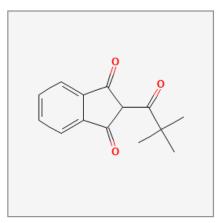
Difethialone $C_{31}H_{23}BrO_2S$



 $Flocoumafen C_{33}H_{25}F_{3}O_{4}$



CHEMICAL STRUCTURES | INDANDIONE CLASS


 $Chlorophacinone\ C_{23}H_{15}ClO_{3}$

Diphacinone C₂₃H₁₆O₃

Pindone C₁₄H₁₄O₃

COLOR TESTS | SUMMARY OF COLOR TEST RESULTS FOR ANALYTICAL STANDARDS

Presumptive tests in forensic chemistry analysis are usually performed by color tests. Ten anticoagulant drugs were evaluated using the most common test reagents: Cobalt Thiocyanate, Dille-Koppanyi, Duquenois-Levine, Mandelin's, Marquis, Froehde and Mecke. The color changes and photographs are shown on pages 5-9.

		WARFARIN 1 mg/mL	DIPHACINONE 1 mg/mL	COUMATETRALYL 1 mg/mL	BROMADIOLONE 1 mg/mL	DIFENACOUM 1 mg/mL
Cabalt	Color	No color	No color	No color	No color	No color
Cobalt Thiocyanate	Change Observed	BLUE (→ PINK)	BLUE (→ PINK)	BLUE (→ PINK)	NO	BLUE (→ PURPLE)
	Color	No color	No color	No color	No color	No color
Dille-Koppanyi	Change Observed	NO	NO	NO	NO	NO
Duquenois-	Color	No color	No color	No color	No color	No color
Levine	Change Observed	NO	NO	NO	NO	NO
	Color	No color	No color	No color	No color	No color
Mecke	Change Observed	PINK	BROWN	BROWN	LT PINK (→ BROWN)	NO
	Color	No color	No color	No color	No color	No color
Marquis	Change Observed	NO	YELLOW	ORANGE	ORANGE	NO
	Color	No color	No color	No color	No color	No color
Froehde	Change Observed	NO	YELLOW	NO	PINK	LIGHT YELLOW
	Color	No color	No color	No color	No color	No color
Mandelin's	Change Observed	NO	NO	NO	BROWN	BLACK

		BRODIFACOUM 1 mg/mL	DIFETHIALONE 0.01 mg/mL	FLOCOUMAFEN 1 mg/mL	PINDONE 1 mg/mL	CHLOROPHACINONE 1 mg/mL
O h a h	Color	No color	No color	No color	No color	No color
Cobalt Thiocyanate	Change Observed	BLUE (→ PURPLE)	BLUE (→ PINK)	BLUE	BLUE (→ GREY)	NO
	Color	No color	No color	No color	No color	No color
Dille-Koppanyi	Change Observed	NO	NO	NO	NO	NO
Duquenois-	Color	No color	No color	No color	No color	No color
Levine	Change Observed	NO	NO	NO	NO	NO
	Color	No color	No color	No color	No color	No color
Mecke	Change Observed	NO	DARK YELLOW	NO	YELLOW	YELLOW
	Color	No color	No color	No color	No color	No color
Marquis	Change Observed	NO	NO	NO	YELLOW	YELLOW
	Color	No color	No color	No color	No color	No color
Froehde	Change Observed	NO	NO	NO	YELLOW	YELLOW
	Color	No color	No color	No color	No color	No color
Mandelin's	Change Observed	BLACK	YELLOW	NO	GREEN	YELLOW

ANALYTICAL STANDARD	COLOR	TEST	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi	0	O.
	Duquenois-Levine	0	
BRODIFACOUM 1 mg/mL	Mecke		
	Marquis	\bigcirc	
	Froehde	0	
	Mandelin's		

ANALYTICAL STANDARD	COLOR -	rest	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi		0
	Duquenois-Levine		0
BROMADIOLONE 1 mg/mL	Mecke		
	Marquis		
	Froehde	0	۲
	Mandelin's		

() 5

ANALYTICAL STANDARD	COLOR	TEST	REACTION
	Cobalt Thiocyanate	0	
	Dille-Koppanyi	0	
	Duquenois-Levine		
CHLOROPHACINONE 1 mg/mL	Mecke		
	Marquis		
	Froehde	0	
	Mandelin's		

ANALYTICAL STANDARD	COLOR -	TEST	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi		0
	Duquenois-Levine		0
COUMATETRALYL 1 mg/mL	Mecke		
	Marquis		
	Froehde	0	
	Mandelin's		

() 6

ANALYTICAL STANDARD	COLOR	TEST	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi	0	O.
	Duquenois-Levine		
DIFENACOUM 1 mg/mL	Mecke		0
	Marquis	\bigcirc	
	Froehde	0	
	Mandelin's		

ANALYTICAL STANDARD	COLOR	TEST	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi		0
	Duquenois-Levine		
DIFETHIALONE 0.01 mg/mL	Mecke		
	Marquis		
	Froehde	\bigcirc	0
	Mandelin's		

() 7

ANALYTICAL STANDARD	COLOR	TEST	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi	0	
	Duquenois-Levine		
DIPHACINONE 1 mg/mL	Mecke		
	Marquis	\bigcirc	
	Froehde	0	
	Mandelin's		

ANALYTICAL STANDARD	COLOR -	TEST	REACTION
	Cobalt Thiocyanate		
	Dille-Koppanyi		0
	Duquenois-Levine		
FLOCOUMAFEN 1 mg/mL	Mecke		
	Marquis		
	Froehde	0	
	Mandelin's		

() 8

ANALYTICAL STANDARD	COLOR	REACTION	
	Cobalt Thiocyanate		
	Dille-Koppanyi		0
	Duquenois-Levine	0	
PINDONE 1 mg/mL	Mecke		
	Marquis	\bigcirc	
	Froehde	0	
	Mandelin's		

ANALYTICAL STANDARD	COLOR	REACTION	
	Cobalt Thiocyanate		
	Dille-Koppanyi		0
	Duquenois-Levine		0
WARFARIN 1 mg/mL	Mecke		
	Marquis		
	Froehde	0	
	Mandelin's		

() 9

COLOR TESTS | SUMMARY OF COLOR TEST RESULTS FOR COMMERCIAL PRODUCTS

Ten commercial products were selected to evaluate and characterize. The commercial products evaluated were selected at random based on their availability and active ingredient. The table below shows the commercial products and respective active ingredients. The color changes and photographs for commercial products are shown on pages 12-16.

NAME	BRAND	ACTIVE INGREDIENT (PERCENT COMPOSITION)
Ramik Green Nuggets	Neogen	Diphacinone (0.005%)
DryUp Bars	Harris	Diphacinone (0.005%)
Just One Bite II Bar	Farnam	Bromadiolone (0.005%)
Havoc-XT Blok	Neogen	Brodifacoum (0.005%)
Ditrac All-Weather Blox	Bell	Diphacinone (unknown)
TomCat All-Weather Bait Chunk	Motomco	Diphacinone (unknown)
Bait Block Peanut Butter	JT Eaton	Diphacinone (unknown)
d-Con Bait Blocks	d-Con	Diphacinone (0.005%)
Rodentex Multi-feed Bars	Farnam	Diphacinone (0.005%)
Rodex Pelleted Bait-1	Neogen	Warfarin (0.025%)

COLOR TESTS | SUMMARY OF COLOR TEST RESULTS FOR COMMERCIAL PRODUCTS

		Ramik Green Nuggets Al: diphacinone	DryUp Bars Al: diphacinone	Just One Bite II Bar Al: bromadiolone	Havoc-XT Blok Al: bromadiolone	Ditrac All- Weather Blox Al: diphacinone
Cobalt	Color	Green	Light Yellow	Yellow	Blue	Light Green
Thiocyanate	Change Obs.	Blue	No	No	No	No
	Color	Green	Light Yellow	Yellow	Blue	Light Green
Dille-Koppanyi	Change Obs.	No	No	No	No	No
Duquenois-	Color	Green	Light Yellow	Yellow	Blue	Light Green
Lovino	Change Obs.	No	No	No	No	No
	Color	Green	Light Yellow	Yellow	Blue	Light Green
Mecke	Change Obs.	Brown	Brown	Brown	Yellow	Brown
	Color	Green	Light Yellow	Yellow	Blue	Light Green
Marquis	Change Obs.	Brown	Yellow	No	Yellow	Yellow
	Color	Green	Light Yellow	Yellow	Blue	Light Green
Froehde	Change Obs.	Brown	Brown	No	Yellow	Brown
	Color	Green	Light Yellow	Yellow	Blue	Light Green
Mandelin's	Change Obs.	Brown	No	No	No	Dark Green

		TomCat All- Weather Bait Chunk Al: diphacinone	Bait Block Peanut Butter Al: diphacinone	d-Con Bait Blocks Al: diphacinone	Rodentex Multi-Feed Bars Al: diphacinone	Rodex Pelleted Bait-1 Al: warfarin
Cobalt	Color	Light Green	Light Blue	Green	Yellow	Blue
Thiocyanate	Change Obs.	No	No	Νο	No	No
	Color	Light Green	Light Blue	Green	Yellow	Blue
Dille-Koppanyi	Change Obs.	No	No	No	No	No
Duquenois-	Color	Light Green	Light Blue	Green	Yellow	Blue
Levine	Change Obs.	No	No	No	No	No
	Color	Light Green	Light Blue	Green	Yellow	Blue
Mecke	Change Obs.	Brown	Brown	No	Brown	No
	Color	Light Green	Light Blue	Green	Yellow	Blue
Marquis	Change Obs.	Light Brown	Brown	No	No	No
	Color	Light Green	Light Blue	Green	Yellow	Blue
Froehde	Change Obs.	Light Brown	Brown	No	Brown	No
	Color	Light Green	Light Blue	Green	Yellow	Blue
Mandelin's	Change Obs.	Dark Green	Dark Blue	No	No	No

COMMERCIAL PRO	рист	COLOR TES	T	REACTION
	•	Cobalt Thiocyanate		
	4	Dille-Koppanyi	0	
		Duquenois-Levine	0	3
RAMIK GREEN NUGGETS Al: diphacinone	•	Mecke	0	
	-	Marquis	0	
	*	Froehde	0	
	B	Mandelin's		

COMMERCIAL PRO	COMMERCIAL PRODUCT		т	REACTION
	-	Cobalt Thiocyanate		
		Dille-Koppanyi	0	
		Duquenois-Levine	0	
DRYUP BARS Al: diphacinone	A.	Mecke	0	0
		Marquis	0	
		Froehde	0	
		Mandelin's		

COMMERCIAL PROI	рист	COLOR TES	т	REACTION
	*	Cobalt Thiocyanate		-
		Dille-Koppanyi	0	
	*	Duquenois-Levine	0	
JUST ONE BITE II BAR Al: bromadiolone	a.	Mecke	0	
		Marquis	0	
	-	Froehde	0	
	*	Mandelin's		

COMMERCIAL PRODUCT		COLOR TES	COLOR TEST	
	*	Cobalt Thiocyanate	۲	
	-30	Dille-Koppanyi	0	
	100	Duquenois-Levine	0	-
HAVOC-XT BLOK Al: bromadiolone	*	Mecke	0	
	age	Marquis	0	
	100	Froehde	0	
	10	Mandelin's		

COMMERCIAL PRO	DUCT	COLOR TES	T	REACTION
	we and	Cobalt Thiocyanate		۲
	-	Dille-Koppanyi	0	
		Duquenois-Levine	0	
DITRAC ALL-WEATHER BLOX Al: diphacinone	~	Mecke	0	۲
		Marquis	0	
		Froehde	0	
		Mandelin's		۲

COMMERCIAL PRO	COMMERCIAL PRODUCT		т	REACTION
	S.,	Cobalt Thiocyanate		
	-	Dille-Koppanyi	0	(A)
	-	Duquenois-Levine	0	
TOMCAT ALL-WEATHER BAIT CHUNK Al: diphacinone		Mecke	0	
	-	Marquis	0	
		Froehde	0	
		Mandelin's		

COMMERCIAL PRO	DUCT	COLOR TES	т	REACTION
	*	Cobalt Thiocyanate	۲	
		Dille-Koppanyi	0	-
		Duquenois-Levine	0	
BAIT BLOCK PEANUT BUTTER Al: diphacinone		Mecke	0	
	3	Marquis	0	
		Froehde	0	
		Mandelin's		

COMMERCIAL PRO	DUCT	COLOR TES	т	REACTION
		Cobalt Thiocyanate		
D-CON BAIT BLOCKS Al: diphacinone		Dille-Koppanyi	0	۲
	Duquenois-Levine	0		
	·	Mecke	0	
		Marquis	0	-
		Froehde	0	
	Mandelin's			

COMMERCIAL PRO	DUCT	COLOR TES	т	REACTION
	REF	Cobalt Thiocyanate	0	
		Dille-Koppanyi	0	
	-	Duquenois-Levine	0	
RODENTEX MULTI-FEED BARS Al: diphacinone	REE	Mecke	0	
	Marquis	0	9	
	-	Froehde	0	
	Mandelin's			

COMMERCIAL PRO	DUCT	COLOR TES	т	REACTION
-	Cobalt Thiocyanate			
		Dille-Koppanyi	0	-
	-	Duquenois-Levine	0	
PELLETED BAIT-1 AI: warfarin	Mecke	0	-	
	Marquis	0		
	- apo	Froehde	0	-
	Mandelin's			

() 16

ANALYTICAL METHODS | DYE ANALYSIS IN COMMERCIAL PRODUCTS

PURPOSE: To provide an example analytical method for the analysis of dyes in commercial rodenticide products. Many anticoagulant preparations have marker dyes or dye mixtures intermixed to facilitate identification. The HPLC-DAD-UV method below was used to separate and further characterize the dyes in these commercial products.

AGILENT TECHNOLOGIES
HPLC-DAD-UV
HP 1100 SERIES
GRADIENT SETTING

GRADIENT SETTING	
TIME	%В
0.00	5
1.50	5
3.00	20
6.00	40
10.00	60
13.00	80
16.00	90
18.00	90
21.00	80
24.00	60
27.00	50
30.00	25
32.00	20
35.00	5
40.00	5

Column	NOVA-PAK 3.9x150mm, 4 µm	
Column Temperature	40°C	

CURANATACR

Column Temperature	40°C
Mobile Phase A	20mM Ammonium Acetate buffer with 1% Acetic Acid
Mobile Phase B	Acetonitrile
Flow Rate	1 mL/min.
Injection Volume	10 µL

DAD-UV PARAMETERS	
DAD Signals	220, 280, 350, 450, and 650
Spectrum Range	250-800 nm

ANALYTICAL METHODS | QUALITATIVE METHODOLOGY - SEIZED MATERIAL

PURPOSE: To provide an example analytical method for the analysis of anticoagulant drugs in seized material via gas chromatography mass spectrometry (GC/MS).

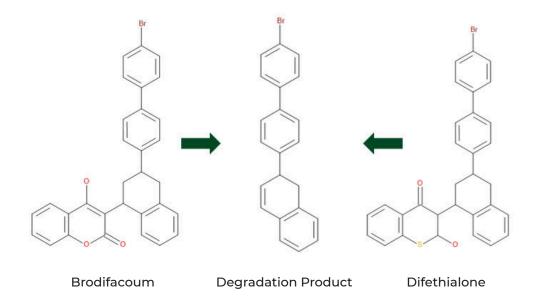
AGILENT TECHNOLOGIES (SANTA CLARA, CA)

Gas Chromatograph: 6890 Network GC System Mass Spectrometer: 5975B inert XL MSD

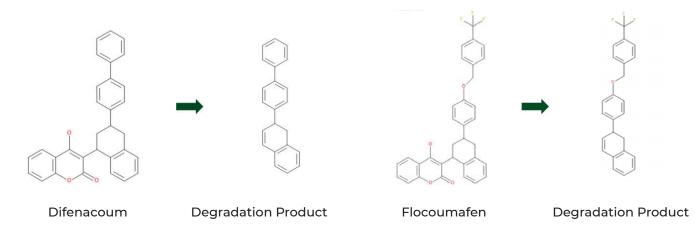
GAS CHROMATOGRAPH PARAMETERS

Column	DB-1 (0.20 mm x 12 m; 0.33µm film thickness
He flow rate	2.3 mL/min
Injection Port Temp	265°C
Injection Volume	lμL
Mode	Splitless
Inlet Pressure	18.6 psi
Oven	Initial Temp: 50° C, ramp temp at the rate of 30° C/min up to 340° C.
Aux Temp	300°C

DRUG	LOD (mg/mL)
Brodifacoum ^{1,2}	0.1
Bromadiolone ¹	0.2
Chlorophacinone	0.1
Coumatetralyl	0.01
Difenacoum ¹	0.2
Difethialone ^{1,2}	0.05
Diphacinone	0.04
Flocoumafen ¹	0.1
Pindone	0.0025
Warfarin	0.02


MASS SPECTROMETER PARAMETERS	
Source Temp.	230°C
MS range	50~750 m/z

¹ Identified by the degradation product.


^{1,2} Because both analytes yield the same degradation product, they were run individually for diagnostic purposes.

GCMS METHODS | DEGRADATION PRODUCTS

Both brodifacoum and difethialone breakdown into the same degradation product by breaking the naphthalene substrate. Because both drugs have the same degradation product, another analytical technique may be necessary to positively identify brodifacoum and difethialone.

Difenacoum and flocoumafen follow a similar pattern like brodifacoum and difethialone, where the breaking of the naphthalene substrate forms the degradation product. However, each forms a unique degradation product indicative of the original drug.

19

PURPOSE: To provide an example analytical method for the analysis of anticoagulant drugs in seized material via liquid chromatography ion trap mass spectrometry (LCTRAP).

THERMO FISHER (WALTHAM, MA)

Liquid Chromatograph: Vanquish UHPLC System

Mass Spectrometer: QExactive Hybrid Quadrupole-Orbitrap Mass Spectrometer

MASS SPECTROMETER PARAMETERS	
Spray Voltage	2.5 kV
Capillary Temp.	300°C
AGC Target	1e5
Resolution	35,000
Stepped Collision Energy	20, 40, and 80 eV

LIQUID CHROMATOGRAPH PARAMETERS		
Column	Accucore C18 (2.1 x 100 mm, 2.6µm)	
Column Temp.	30°C	
Mobile Phase A	0.1% Formic Acid in Water	
Mobile Phase B	0.1% Formic Acid in Acetonitrile	
Flow Rate	0.3 mL/min	
Gradient	0 min: 95:5 A:B	
	3 min: 40:60 A:B	
	7 min: 5:95 A:B	
	7.01 min: 95:5 A:B	
	8.50 min: 95:5 A:B	

COMPOUND (POLARITY)	PRECURSOR (m/z)	FRAGMENT IONS (m/z)	
Brodifacoum D4 (+)	527.1154	335.0427, 256.1243, 178.0776, 165.0699, 91.0548	
Brodifacoum (+)	523.0903	335.0420, 256.1245, 178.0777, 165.0700, 91.0550	
Bromadiolone (-)	525.0707	283.0420, 250.0600, 163.0200, 93.0300, 78.9200	
Chlorophacinone (+)	375.0783	321.0907, 263.0700, 235.075, 178.0775, 165.0700	
Coumatetralyl (+)	293.1172	175.0390, 121.0286, 107.0494, 91.0550, 79.0548	
Difenacoum (+)	445.1798	257.1320, 179.8500, 178.0777, 165.0700, 91.0548	
Difethialone (+)	539.0675	335.0426, 256.1242, 178.0776, 165.0698, 91.0547	
Diphacinone (+)	341.1172	323.1063, 263.0700, 235.0750, 178.0776, 105.0340	
Flocoumafen (+)	543.1778	523.1711, 355.1302, 291.1010, 159.0420, 109.0451	
Pindone (+)	231.1016	213.0909, 185.0960, 165.0699, 152.0619, 128.0620	
Warfarin (+)	309.1121	251.0700, 191.0337, 163.0390, 147.0800, 121.0286	

METHOD CHARACTERISTICS

Limit of Detection	100 ng/mL
Carryover	>10,000 ng/mL for chlorophacinone, difenacoum, and diphacinone; >100,000 ng/mL for the remaining compounds
Autosampler Stability (at -15°C)	All compounds were stable for up to 72 hours with the exception of brodifacoum, chlorophacinone and bromadiolone. Chlorophacinone and brodifacoum at the low concentration (100 ng/mL) were unstable after 24h and bromadiolone after 48h.

SAMPLE PREPARATION | SEIZED MATERIAL

PURPOSE: To provide two example sample preparation workflows for the isolation of anticoagulant analytes from seized material. These preparation approaches provide a starting point for laboratories looking to assess sample preparation methods for these drugs, ultimately saving valuable time and resources. These sample preparation methods could serve useful for a qualitative screening approach.

ACID BASE EXTRACTION FOR GCMS

- 1. Add ~50 mg seized material (plant material) to a 13x100 test tube.
- 2. Add 1 mL of DI water.
- 3. Add 200 µL of internal standard (brodifacoum D4).
- 4. Add 3-5 drops of concentrated hydrochloric acid; use pH paper to test acidity.
- 5. Add 1 mL of 90:10 DCM:IPA extraction solvent.
- 6. Vortex and transfer the organic layer (bottom layer) to a new 13x100 test tube.
- 7. To the original 13x100 test tube, add 3-5 drops of concentrated ammonium hydroxide; use pH paper to test basicity.
- 8. Add 1 mL of 90:10 DCM:IPA extraction solvent.
- 9. Vortex and transfer the organic layer (bottom layer) to the same test tube in step 6.
- 10. For GCMS analysis, transfer the liquid to an autosampler vial, cap and crimp.

. . .

METHANOL DILUTION FOR GCMS

- 1. Add ~50 mg seized material (plant material) to a 13x100 test tube.
- 2. Add 1 mL of methanol.
- 3. Add 200 µL of internal standard n-propylamphetamine and 10,11-dihydrodibenz[b,f][1,4]-oxazepin-11-one.
- 4. Vortex and transfer to an autosampler vial, cap and crimp.

. . .

METHANOL DILUTION FOR LCTRAP

- 1. Add ~50 mg seized material seized material (plant material) to a 13X100 test tube.
- 2. Add 1 mL of methanol.
- 3. Vortex and dilute 1:99 with 95:5 A:B mobile phase (10 µL of methanol solution + 990 µL of mobile phase).
- 4. Add 50 µL of brodifacoum D4 internal standard.
- 5. Vortex and transfer 1 mL to an autosampler vial and cap.

ANALYTICAL METHODS | QUALITATIVE SCREENING IN BIOLOGICAL MATRICES

PURPOSE: To provide an example analytical method for the analysis of anticoagulant drugs in biological matrices via liquid chromatography ion trap mass spectrometry (LCTRAP).

THERMO FISHER (WALTHAM, MA)

Liquid Chromatograph: Vanquish UHPLC System

Mass Spectrometer: QExactive Hybrid Quadrupole-Orbitrap Mass Spectrometer

MASS SPECTROMETER PARAMETERS		
Spray Voltage	2.5 kV	
Capillary Temp.	300°C	
AGC Target	1e5	
Resolution	35,000	
Stepped Collision Energy	20, 40, and 80 eV	

LIQUID CHROMATOGRAPH PARAMETERS			
Column	Accucore C18 (2.1 x 100 mm, 2.6µm)		
Column Temp.	30°C		
Mobile Phase A	0.1% Formic Acid in Water		
Mobile Phase B	0.1% Formic Acid in Acetonitrile		
Flow Rate	0.3 mL/min		
Gradient	0 min: 95:5 A:B		
	3 min: 40:60 A:B		
	7 min: 5:95 A:B		
	7.01 min: 95:5 A:B		
	8.50 min: 95:5 A:B		

COMPOUND (POLARITY)	PRECURSOR (m/z)	FRAGMENT IONS (m/z)	
Brodifacoum D4 (+)	527.1154	335.0427, 256.1243, 178.0776, 165.0699, 91.0548	
Brodifacoum (+)	523.0903	335.0420, 256.1245, 178.0777, 165.0700, 91.0550	
Bromadiolone (-)	525.0707	283.0420, 250.0600, 163.0200, 93.0300, 78.9200	
Chlorophacinone (+)	375.0783	321.0907, 263.0700, 235.075, 178.0775, 165.0700	
Coumatetralyl (+)	293.1172	175.0390, 121.0286, 107.0494, 91.0550, 79.0548	
Difenacoum (+)	445.1798	257.1320, 179.8500, 178.0777, 165.0700, 91.0548	
Difethialone (+)	539.0675	335.0426, 256.1242, 178.0776, 165.0698, 91.0547	
Diphacinone (+)	341.1172	323.1063, 263.0700, 235.0750, 178.0776, 105.0340	
Flocoumafen (+)	543.1778	523.1711, 355.1302, 291.1010, 159.0420, 109.0451	
Pindone (+)	231.1016	213.0909, 185.0960, 165.0699, 152.0619, 128.0620	
Warfarin (+)	309.1121	251.0700, 191.0337, 163.0390, 147.0800, 121.0286	

METHOD CHARACTERISTICS

Limit of Detection	100 ng/mL
Carryover	>2,000 ng/mL
Autosampler Stability (at -10 °C)	72 hours for bromadiolone, chlorophacinone, coumatetralyl, difenacoum, diphacinone, flocoumafen and warfarin. 48 hours for brodifacoum. 24 hours for difethialone and pindone.

SAMPLE PREPARATION | BIOLOGICAL SAMPLES

PURPOSE: To provide an example sample preparation workflow for the extraction of anticoagulant analytes from human blood.

EXTRACTION PROTOCOL:

PROTEIN CRASH:

- 1. Aliquot 0.5 mL of blood into a 13x100 test tube
- 2. Add 25 µL of internal standard (brodifacoum D4)
- 3. Vortex for 30 seconds
- 4. Add 0.5 mL of formate buffer (pH 3)
- 5. Add 2 mL of acetone
- 6. Cap and rotate for 5 minutes
- 7. Centrifuge for 5 minutes at 3000 rpm
- 8. Transfer top layer to a new 13x100 test tube

LIQUID-LIQUID EXTRACTION:

9. Add 1.5 mL of n-butyl chloride

- 10. Cap and rotate for 5 minutes
- 11. Centrifuge for 5 minutes at 3000 rpm
- 12. Transfer top layer to a new 13x100 test tube
- 13. Evaporate to dryness at 35°C for 25 minutes
- 14. Reconstitute in 100 µL of mobile phase (95A:5B)

ANALYTICAL METHODS | CONFIRMATION IN BIOLOGICAL SAMPLES

PURPOSE: To provide an example of an analytical method for the analysis of anticoagulant drugs in biological matrices via liquid chromatography tandem mass spectrometry. This analytical methodology can be used qualitatively and quantitatively.

THERMO FISHER (WALTHAM, MA)

Liquid Chromatograph: Acquity UPLC

Mass Spectrometer: Xevo TQ-S micro QQQ Mass Spectrometer

MASS SPECTROMETER PARAMETERS		
Capillary	3.2 kV	
Desolvation Temp.	500°C	
Desolvation Flow Rate	1,000 L/Hr	
Ionization mode	Negative	

LIQUID CHROMATOGRAPH PARAMETERS			
Column	ACQUITY UPLC BEH C18 (2.1 x 100 mm, 1.7 μm)		
Column Temp.	60°C		
Autosampler Temp.	15°C		
Mobile Phase A	0.02% Ammonium Hydroxide in Water		
Mobile Phase B	0.02% Ammonium Hydroxide in Methanol		
Flow Rate	0.4 mL/min		
	0 min: 95:5 A:B		
Gradient	1.6 min: 5:95 A:B		
	3.5 min: 5:95 A:B		
	3.6 min: 95:5 A:B		
	4 min: 95:5 A:B		

METHOD CHARACTERISTICS		
Linear Range	5-250 ng/mL	
Limit of Detection	1 ng/mL	
Carryover	>250 ng/mL	
Autosampler Stability	72 hours	
Applicable Matrices	Blood, Serum, Plasma, Urine	

ANALYTICAL METHODS | CONFIRMATION IN BIOLOGICAL SAMPLES

COMPOUND	TOP: PRECURSOR ION TO QUANTIFICATION ION (m/z) BOTTOM: PRECURSOR ION TO QUALIFIER ION (m/z)	CONE VOLTAGE (V)	COLLISION ENERCY	EXPECTED RT (min)
Brodifacoum D4	527.1 → 139.3 527.1 → 223.2	4 4	40 40	2.01
Brodifacoum	521.0 → 135.0 521.0 → 93.1	6 6	36 62	2.01
Bromadiolone D5	532.2 → 255.2 532.2 → 137.3	4 4	35 35	1.92
Bromadiolone	527.0 → 250.0 525.0 → 250.0	66 18	34 34	1.90
Chlorophacinone D4	377.1 → 201.1 377.1 → 149.0	24 24	20 20	1.80
Chlorophacinone	373.1 → 201.1 373.1 → 145.2	4 4	20 20	1.80
Coumatetralyl D4	295.0 → 141.1 295.0 → 110.0	2 2	24 24	1.49
Coumatetralyl	291.0 → 141.1 291.0 → 106.1	4 4	24 24	1.50
Difenacoum D4	448.2 → 294.2 448.2 → 139.4	4 4	35 35	1.93
Difenacoum	443.3 → 135.2 443.3 → 293.2	4 4	35 35	1.93
Difethialone	537.0 → 79.0 537.0 → 151.0	90 90	42 38	2.02
Diphacinone D4	343.1 → 167.1 343.1 → 176.1	4 4	20 20	1.68
Diphacinone	339.1 → 167.2 339.1 → 172.1	4 4	25 30	1.68
Flocoumafen D4	545.2 → 386.0 545.2 → 165.0	60 60	24 36	1.98
Flocoumafen	541.1 → 381.9 541.1 → 161.0	86 86	22 38	1.98
Pindone	229.4 → 116.1 229.4 → 144.0	4 4	35 25	1.46
Warfarin D5	312.0 → 161.0 312.0 → 255.0	14 14	18 20	1.42
Warfarin	307.0 → 160.0 307.0 → 250.0	56 56	16 20	1.42

() 25

SAMPLE PREPARATION | BIOLOGICAL SAMPLES

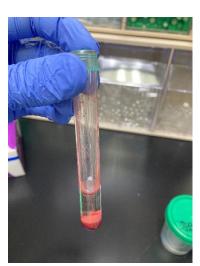
PURPOSE: To provide a unique example of sample preparation workflows for the extraction of anticoagulant drugs from human blood. This extraction protocol can be used for screening or confirmatory testing.

EXTRACTION PROTOCOL:

PROTEIN CRASH:

- 1. Aliquot 0.5 mL of blood into a 13x100 test tube
- Add 25 μL of internal standard mix (brodifacoum D4, bromadiolone D5, chlorophacinone D4, coumatetralyl D4, difenacoum D4, diphacinone D4, flocoumafen D4 and warfarin D5).
- 3. Add 0.5 mL of formate buffer (pH 3)
- 4. Add 2 mL of acetone
- 5. Cap and rotate for 5 minutes
- 6. Centrifuge for 5 minutes at 3000 rpm
- 7. Transfer top layer into a new 13x100 test tube

LIQUID-LIQUID EXTRACTION:

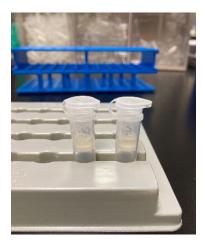

- 8. Add 1.5 mL of n-butyl chloride
- 9. Cap and rotate for 5 minutes
- 10. Centrifuge for 5 minutes at 3000 rpm
- Transfer top layer into a new 13x100 test tube
- 12. Evaporate to dryness at 35°C for 25 minutes
- 13. Reconstitute in 200 µL of 95:5 MPA:MPB
- 14. Vortex and transfer solution to a Costar[®] Spin-X[®] centrifuge tube filter
- 15. Centrifuge filter tube for 10 minutes at 2000 rpm
- 16. Transfer filter solution into autosampler vial

Addition of formate buffer (pH 3)

Addition of acetone

Centrifuge after protein crash

Transferring top layer


ANALYTICAL METHODS | SAMPLE PREPARATION / EXTRACTION — HUMAN MATRIX

Addition of n-butyl chloride

Reconstitute with initial mobile phase condition 95:5 MPA:MPB

Transfer to centrifuge filter tube

Filtered sample solution and transfer to a LC auto-sampler vial with glass insert

