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Detection and Characterization of Subpopulations 
and the Study of Algorithmic Bias in Forensic 

Identifcation of Source Problems 

Abstract—The forensic source identifcation problem involves 
providing the summary of the forensic evidence to a decision-
maker via the value of that evidence. This can be done via 
the forensic likelihood ratio which in turn requires modeling 
of a relevant background population. Some of the commonly 
used methods involve the assumption of normality. However, 
there might exist a latent variable representing an underlying 
subpopulation structure. In this work, we will focus on identifying 
and characterizing subpopulations in the relevant population 
when there are hierarchically structured data. This will be done 
through semi-supervised fnite mixture models that are adjusted 
for the hierarchical sampling procedure. In addition, we will study 
systematic algorithmic biases that can occur as measured by rates 
of misleading evidence for each of the subpopulations when the 
subpopulation structure is not accounted for. We will illustrate 
this based on a simulation study using synthetic data and classical 
glass datasets. 

I. INTRODUCTION 

In forensic science, the source identifcation problem in-
volves providing the summary of the forensic evidence to a 
decision-maker about the origins of the given evidence. One 
way of providing a summary is through the value of that 
evidence. For glass trace evidence we can have the following 
questions 
• Are the glass fragments found on the suspect from the 

same source as the specifc crime scene window? A 
specifc source (window) problem. 

• Are the glass fragments found on these two different 
suspects from the same unknown crime scene window? 
A common but unknown source (window) problem. 

For both problems, one common method for making inferences 
is through the likelihood ratio approaches (Bayes factor (BF) 
and likelihood ratio (LR)) [Aitken et al., 2007, Ommen and 
Saunders, 2021]. 

Generally, there are two competing propositions. For the 
common but unknown source problem, these propositions are 
Hp : EU1 and EU2 were generated from a common but 
unknown source from the relevant source population EA and 
Hd : EU1 and EU2 were generated from two randomly selected 
sources from the relevant source population, EA. These two 
hypotheses are commonly referred to as the prosecution’s and 
the defense’s proposition, respectively. Let Md and Mp denote 
the models associated with the two competing propositions. 
Then the question is: “What is the likelihood of observing the 
evidence under the prosecution model? vs. What is the like-
lihood of observing the evidence under the defense model?” 

The LR can be written as 

f(e|Mp, θ)
LR = ,

f(e|Md, θ) 

where e = {eu1 , eu2 , ea} is the observed evidence. 
Colin G. G. Aitken and David Lucy [2004] proposed using 

two types of LRs. The frst is using the multivariate normal-
based LR where we assume multivariate normality for both 
the between- and within-source distributions. The second is 
LR based on modeling the between-source distribution with a 
kernel density estimate applied to EA. These approaches are 
implemented in the comparison R-package [Lucy et al., 2020]. 
Our goal is to fnd a more effcient model for the between-
source distribution to be used in the calculation of the LR. 

A Gaussian random effects model can be used to describe 
how the evidence arises. Let Xij for i = 1, ..., m and 
j = 1, .., ni be a p × 1 vector containing the features of 

ith Xmnthe jth sample from the source, where is the 
set of all samples in the background population. Assuming 
Gaussian within- and between-source distribution, a random 
effects model is given as Xij = µ + ai + ϵij , where µ is the 
overall mean of the sources, ai ∼ MV N(0, Σa) describes 
the between source distribution, and ϵij ∼ MV N(0, Σϵ) 
describes the within-source distribution. We will explore the 
following sampling experiment for the jth sample from the 
ith source when a subpopulation structure is present in the 
relevant source population. Let Xij = ai + ϵij , where 
zi ∼ Multinoulli(τ1, ..., τK ), ai|zi = k ∼ MV N (µk, Σk), 
and ϵij ∼ MV N (0, Σϵ), for k = 1, . . . ,K subpopulations 
with mixing proportions τ1, . . . , τK , respectively. 

II. ALGORITHMIC BIAS 

A. Rates of misleading evidence 

For some cutoff c (usually c = 1), LR > c suggests that the 
prosecution hypothesis is more likely, and LR < c suggests 
that the defense hypothesis is more likely. Then the rate of 
misleading evidence in favor of the prosecution (RMEP) is 
defned as the proportion of different source comparisons with 
LR values greater than c and the rates of misleading evidence 
in favor of the defense (RMED) is the proportion of same 
source comparisons that resulted in LR values less than c. 
The bias we are concerned about is the rate of misleading 
evidence in favor of the prosecution (RMEP). We will focus on 
the variation of this RMEP among subpopulations of differing 
sizes. 
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B. Study of algorithmic bias 
We introduce the following notation. Let S1 ⊂ {1, . . . , n}

be the set of indices of objects that belong to the majority 
subpopulation. Similarly, let S2 ⊂ {1, . . . , n} be the set of 
indices of objects that belong to the minority subpopulation. 
Defne Sk,k′ = {(i, i ′ ) : i ∈ Sk, i ′ ∈ Sk′ , i ̸= i ′ } for 
k, k ′ ∈ {1, 2} and the comparison LRi,i′ = LR(eui , esi ′ |ea). 
The algorithm used to study algorithmic bias represented by 
rates of misleading evidence in favor of the prosecution is 
given below. To study the effects of the size of subpopulations, 
we simulated a two-component mixture varying the mixing 
proportions representing the sizes of the subpoulations with 
τ ∈ {.1, .15, .2, .25}. The following algorithm describes the 
steps. 

Algorithm 1 Simulation 
1: for K = 2, τ ∈ {.1, .15, .2, .25} do 
2: Generate m = 200 source means from the source level mixture model 

with π as the mixing proportion for the minority population [Melnykov 
et al., 2012]. 

3: Generate ni = 10, ∀i = 1, . . . , m observations from each within 
source distribution. 

4: Split the data into train and test sets, so that each set contains an equal 
number of sources preserving π. Let the train set be eA. 

5: Using the test set, label the frst 5 observations as the trace and the 
last 5 observations as the control for each source. 

6: Do all pairwise comparisons of traces and controls for the sources in 
the test set using a plug-in estimate of LR using eA as the relevant 
population. 

7: Calculate RMEP. 
8: end for 
9: Repeat B = 100 times 

For the case of 2 subpopulations, there are four cases for 
the RMEP relative to subpopulations. Consider the scenario 
where the trace objects (eu) come from the subpopulation 
of interest (All different source comparisons) and the control 
objects could come from both the majority and minority 
subpopulations. Then for the minority population, the RMEP 
is given as X1 
RMEP1B = I(LRi,i′ > c) (1)

|S1,1 ∪ S1,2| 
(i,i′)∈S1,1∪S1,2 

Similarly, for the majority population, the RMEP is X1 
RMEP2B = I(LRi,i′ > c). (2)

|S2,1 ∪ S2,2| 
(i,i ′ )∈S2,1∪S2,2 

Now consider the scenario where both the control and trace 
objects come from the subpopulation of interest. In the case 
of the minority subpopulation we can compute the RMEP as X1 

RMEP1W = I(LRi,i ′ > c). (3)
|S1,1| 

(i,i′)∈S1,1 

Finally, in the case of the majority population we have X1 
RMEP2W = I(LRi,i ′ > c). (4)

|S2,2| 
(i,i′)∈S2,2 

Fig. 1. Illustration of the pairwise source level comparisons. The top plot 
shows a case of the control being from both subpopulations and the bottom 
plot shows that the control source is taken from within the subpopulation only. 

This difference is illustrated in Figure 1. 
For each of the subpopulations and both cases between 

and within, we computed RMEP for B = 100 replicates and 
obtain mean and standard deviations. The results of the RMEPs 
computed in the four cases are shown in Table I. The column 
labeled “All” represents the RMEPs computed using Eq 1 and 
Eq 2 for each mixture. The column labeled “Subpopulation” 
indicates the RMEPs computed using Eq 3 and Eq 4. The 
overall error rates are presented in the last column. First, 
comparing the RMEP for the majority and minority population 
with all the pairwise comparisons, we see that the error rates 
of the minority population are almost 3 to 7 times more than 
the majority population. This becomes even more stark when 
we look at error rates within the subpopulations where the 
minority RMEP is 18 to 30 times more than the majority 
RMEP. This means that traces from different sources within 
the minority population will be incorrectly identifed as being 
from the same source 18 to 30 times more than different 
sources from the majority population. In addition, moving from 
“All” to within subpopulation, we see that the majority RMEP 
increases slightly by about 2 percent; however, the minority 
RMEP increases from 4 to 10 times. The results of normal-
based vs. kernel-based LRs can also be seen in Table II. The 
RMEPS based on the kernel-based LRs are very similar to the 
normal-based LRs and the error rate gaps between the minority 
and majority groups did not improve. The RMEPs improved 
slightly for the minority population, but the differences in error 
rates within the minority population were still 16 to 24 times 
more than the within majority RMEP. 

Glass data-based simulation: 
We computed RMEP for the 3-dimensional glass data with 

three subpopulations [Colin G. G. Aitken and David Lucy, 
2004]. Similar results are obtained. The overall RMEP is about 
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TABLE I. THE MEAN (SD) OF THE RATES OF MISLEADING EVIDENCE 
IN FAVOR OF THE PROSECUTION (RMEP) FROM 100 REPLICATES IN 

SIMULATED DATA USING NORMAL-BASED LRS. 

RMEP 
Mixture k πk All Subpopulation Overall 

1 .25 0.023 (0.006) 0.094 (0.025)1 0.008 (0.002)2 .75 0.003 (0.001) 0.005 (0.001) 
1 .2 0.020 (0.007) 0.103 (0.034)2 0.007 (0.002)2 .8 0.004 (0.001) 0.005 (0.001) 
1 .15 0.014 (0.006) 0.102 (0.038)3 0.005 (0.001)2 .85 0.004 (0.001) 0.005 (0.001) 
1 .1 0.011 (0.006) 0.125 (0.065)4 0.005 (0.001)2 .9 0.004 (0.001) 0.004 (0.001) 

TABLE II. RATES OF MISLEADING EVIDENCE IN FAVOR OF THE 
PROSECUTION FROM SIMULATED DATA BOTH NORMAL-BASED AND 

KERNEL-BASED LRS. 

RMEP 

πk k 
all 

LR1 LR2 

subpopulation 
LR1 LR2 

.1 1 0.011 (0.006) 0.009 (0.005) 0.125 (0.065) 0.096 (0.055) 

.9 2 0.004 (0.001) 0.004 (0.001) 0.004 (0.001) 0.004 (0.001) 
.15 1 0.014 (0.006) 0.012 (0.005) 0.102 (0.038) 0.084 (0.032) 
.85 2 0.004 (0.001) 0.004 (0.001) 0.005 (0.001) 0.005 (0.001) 
.2 1 0.020 (0.007) 0.017 (0.006) 0.103 (0.034) 0.087 (0.030) 
.8 2 0.004 (0.001) 0.004 (0.001) 0.005 (0.001) 0.005 (0.001) 

.25 1 0.023 (0.006) 0.019 (0.006) 0.094 (0.025) 0.080 (0.022) 

.75 2 0.003 (0.001) 0.004 (0.001) 0.005 (0.001) 0.005 (0.001) 

5% and subpopulation-specifc RMEP ranged from 3 to 5% 
when all between source comparisons. However, when looking 
at the within-source comparisons the RMEP increased by 8% 
for the largest subpopulation and to 14% and 21% for the other 
two subpopulations of equal sizes. 

Therefore, in all the simulations when comparing a trace 
to controls in the entire population the error rate in the 
majority subpopulation is not too different from the overall 
error rate. But when we decompose the overall error rate 
by subpopulation, we see that the minority subpopulation 
has higher error rates than the majority. This is even more 
apparent when traces and control comparisons are from within 
a subpopulation the RMEP is up to ten-fold in minority 
subpopulations than in the majority population. This in practice 
can lead to incorrect decisions being made at a higher rate in 
minority subpopulations. This is problematic since there can be 
undetected bias when we do not know there is a subpopulation 
structure in the relevant source population. 

TABLE III. RATES OF MISLEADING EVIDENCE FROM 3-DIMENSIONAL 
GLASS DATA WITH THREE LABELED SUBPOPULATIONS. 

RMEP 
all subpopulation 

π̂k k LR1 LR2 LR1 LR2 

— 1-3 0.0409 0.0398 — — 
.258 1 0.0333 0.0333 0.1429 0.1429 
.258 2 0.0500 0.0458 0.2143 0.1964 
.484 3 0.0400 0.0400 0.0857 0.0857 

III. RELATIVE EFFICIENCY 

Currently, there are multiple versions of the likelihood ratio. 
For example the normal-based likelihood ratio, kernel density-
based likelihood ratio Colin G. G. Aitken and David Lucy 
[2004], and mixture-based likelihood ratio Franco-Pedroso 

Fig. 2. Relative effciency of normal-based likelihood ratio compared to 
KDE-based likelihood ratio. The top plot is for when EA has a homogeneous 
population and the bottom plot is when there is a subpopulation structure. 

et al. [2016]. Since there are multiple versions of the likelihood 
ratio, how should one compare likelihood ratios on a given type 
of evidence to determine which performs better? We propose 
using a relative effciency measure, which is the ratio of the 
variances of the estimated LRs to the true LR. Thus, if the 
relative effciency is less than 1, the LR version that estimated 
the top of the ratio is more effcient, which means on average 
it is closer to the true LR value. 

Suppose we have two likelihood ratio methods for the 
common but unknown source identifcation problem denoted 

(ns (ns (ns)as L1(e )) and L2(e )) respectively, where e = 
(ns ) (ns) th{eu1, eu2, ea } and ea is the s randomly sampled 

background population consisting of n sources. Finally, let 
L(eu1, eu2) be the true likelihood ratio value. The relative 
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effciency of the two likelihood ratio methods is defned as � �2PS (nsL(eu1, eu2) − L̂ 
1(e ))s=1ˆγn(L̂1, L2) = � �2PS 

L(eu1, eu2) − L̂2(e(ns))s=1 � �2 
S (nsX L(eu1, eu2) − L̂1(e )) 

= � �2 .PS (n ′ )s=1 ′ L(eu1, eu2) − L̂2(e s )s =1 

The asymptotic relative effciency is, 

γ(L̂ 
1, L̂ 

2) = lim γn(L̂ 
1, L̂ 

2). 
n→∞ 

Let L̂1 be the normal-based plug-in LR and L̂2 be the 
kernel-based plug-in LR (based on Colin G. G. Aitken and 
David Lucy [2004]). For the common but unknown source 
likelihood ratio, there are two sets of evidence with un-
known sources, eu1 and eu2 . For this simulation, the pros-
ecution model will be true which means eu1 and eu2 will 
be randomly sampled from the same source which in this 
case will be the mean of the frst subpopulation. Both 
eu1 and eu2 consists of 5 samples.The relative effciency 
γn(L1, L2) is then calculated through simulation for n = 
30, 60, 120, 240, 480, 960, 1920, 3840, 7680 where S = 250. 
Relative effciency is calculated when only the frst subpop-
ulation, in which eu1 and eu2 reside, is in the background 
population. Hence, there is no subpopulation structure in 
the background population. The relative effciency is then 
calculated when the second subpopulation is added to the 
background population along with the frst subpopulation. 
Hence, there is a subpopulation structure in the background 
population. The results can be seen in Figure 2. The top plot 
shows the relative effciency values as n increases for the case 
when there is a single subpopulation. It can be seen from this 
plot that the normal-based likelihood ratio is around 20 times 
more effcient than the kernel-based likelihood ratio in this 
case. This means that the normal-based likelihood ratio, on 
average, is 20 times closer to the true value of the likelihood 
ratio in terms of mean squared error compared to the kernel-
based likelihood ratio. The bottom plot in Figure 2 shows the 
relative effciency when there are two subpopulations. It can 
be seen that as n increases the kernel-based likelihood ratio is 
about 3.5 times for effcient than the normal-based likelihood 
ratio. This is because the kernel-based likelihood ratio is 
fexible and better able to model the two subpopulations. 
Interestingly, for small sample sizes (i.e., n = 30, 60) the 
normal-based likelihood ratio is more effcient even though 
the assumptions of normally are known to be broken. This 
means that the kernel-based estimation method is failing to 
adequately model the population given low sampling sizes and 
is being outperformed by the normal-based method in terms 
of LR mean squared error even though the assumptions do not 
hold. 

IV. FINITE MIXTURE MODEL-BASED SOLUTIONS 

We will consider a glass data example [Aitken et al., 
2007] where subpopulation structures are evident. Glass data 

Fig. 3. Pairwise scatterplot of the observations from the glass dataset 
(Zadora’s) 

are from the Institute of Forensic Research in Krakow, 
Poland [Aitken et al., 2007]. The data have seven el-
emental compositions and 2400 observations. There are 
200 windows with four fragments measured three times. 
The rest of the variables represent the elemental com-
positions of the glass fragments: log(NaO), log(MgO), 
log(AlO), log(SiO), log(KO), log(CaO) log(F eO) where 
log(NaO) = log10( Na ). See the pairwise scatter-plot of theO 
data in Figure 3. 
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Fig. 4. Three windows from the glass dataset (Zadora’s) where the blue 
triangles are the window (source) means, the red triangles are the fragment 
(trace) means are the black circles are the measurements (technical replicates) 

In addition to subpopulations, forensic evidence often arises 
from a hierarchical sampling process. i.e. 

1) The source of the fragments is frst sampled from the 
alternative source population with a between-source 
distribution. 

2) Then from that source, the fragments are sampled from 
that specifc within-source distribution. 

3) Finally, the measurement (elemental composition) is 
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taken from the fragment. 
4) Further, there could be technical replicates from each 

fragment. 
This sampling process can be seen in Figure 4 where we see 
three window means with lines to means of fragment replicates 
indicated by lines. 

The research problem is to develop a model that can ac-
count for both heterogeneity and hierarchical structures present 
in data. Previous approaches used in the literature assume 
Gaussian mixture models for modeling heterogeneity but do 
not account for hierarchical structure [Dettman et al., 2014, 
Franco-Pedroso et al., 2016]. One of these approaches is the 
Gaussian fnite mixture model (FMM) approach which fts an 
FMM using source means. In this paper, this was ftted using 
the mclust package in R [R Core Team, 2022, Scrucca et al., 
2016]. Further, this model can be improved by adding the 
estimated within-source covariance to the covariance estimates 
from the FMM which we will refer to as FMM+C. 

A. Proposed method 
Recall the random effects model with K between source 

subpopulations. Let Zi ∼ Multinoulli(τ1, τ2, ..., τK ) be the 
subpopulation membership of the ith source where τk is the 
probability that a source is in the kth subpopulation. In this 
case, the random effects model can be rewritten as 

Xij = ai + ϵij , (5) 

where ai|Zi = k ∼ N(µk, Σk) is the source sampled from 
the kth subpopulation. In this case, it is still assumed that 
the within-source covariance Σϵ remains the same over the 
K subpopulations. Since ai|Zi = k and ϵij have Gaussian 
distributions, Xij |Zi = k ∼ N(µk, Σ ∗ 

k) where Σ ∗ = k Σk + 
Σϵ. 

B. SSFMM and Expectation-maximization algorithm 
The mixture model based on the random effects model can 

be written as 
KX 

f(xij |Ψ) = τkϕ(xij |µk, Σ ∗ 
k), (6) 

k=1 

where Ψ = {τk, µk, Σ ∗ 
k}k=1,...,K needs to be estimated with 

the constraint that fragments coming from the same source 
need to come from the same subpopulation. 

Defne the ith source indexing set as Si = {i1, i2, . . . , im}.S TnTherefore Si = {11, 12, ..., nm} and Si Si′ = i=1 
∅ ∀i, i ′ ∈ {1, , , n} which is needed for the semi-supervised 
algorithm in Melnykov et al. [2015]. Let i(j) be defned such 
that Si(j) = Si. Let Z+ = {S1, S2, ..., Sn} be the set of 
positive constraints in which j, j ′ ∈ Si implies Zij = Zij′ 

where Zij is the subpopulation membership of the jth trace 
from the ith source. The E-step becomes 

τ (t)
|Si(j)| Q (t) (t) 
k ϕ(xiq |µ , Σk )(t+1) q∈Si(j) k 

π = . (7)ijk PK |Si(j)| Q (t) 
, Σ∗(t)τ̇ ϕ(xiq|µ ))k′=1 k′ q∈Si(j) k′ k′ 

where |Si(j)| denotes the cardinality of the set Si(j). Note that 
with this we have ∀j, j ′ ∈ Si, the posterior probabilities π̈ ijk 
and π̈ ij ′ k are equal satisfying the constraint. The M-step is P P P Pn m (t+1) n m (t+1) 
(t+1) i=1 j=1 πijk (t+1) i=1 j=1 xij πijk 

τ = , µ = P P ,k mn k n m (t+1)
πi=1 j=1 ijk P Pn m (t+1) (t+1) (t+1) 

∗(t+1) i=1 j=1(xij − µk )(xij − µk ) ′ πijk 
Σ = P P .k n m (t+1)

πi=1 j=1 ijk 
(8) 

Note that the M-step is similar to the usual FMM model and 
the constraint only affects the E-step of the algorithm. The EM 
algorithm then iterates between the E-step and M-step until a 
prespecifed convergence is reached. The relative change in 
likelihood values is used in our work with ϵ = 10e − 6. This 
criterion is given as 

|L(Ψ(t+1) mn) − L(Ψ(t) mn)||x |x 
< ϵ 

L(Ψ(t+1)|xmn) 

C. Comparison metric 
As the BIC can not be used for model selection in this 

case (likelihood is guaranteed to decrease in the constrained 
model), we opt to use a version of cross-validation approach 
for comparing the different models. 
The Train-test split approach: 

1) One sample(fragment) is randomly removed from each 
source in the dataset and is placed into the test set. 

2) The rest are used in the training set to ft each of the 
competing models. 

(l)3) Let Zj be the membership assigned to the jth source 
by the lth model. 

(l)4) Then let Ẑ 
jr be the predicted subpopulation member-

ship by the lth model of the removed sample from the 
jth source. 

(l) (l)5) If Ẑ 
jr = Zj then we say the subpopulation member-

ship of that sample was correctly identifed by the lth 

model. Pm (l)(l) 16) The accuracy of the model: acc = I(Ẑ = m j=1 jr 
(l)

Z ).j 

Using these steps we can study the out-of-sample performance 
of the competing approaches. 

D. Simulation setup 
A simulation study was conducted by randomly generating 

mixture models by varying four settings using the MixSim 
[Melnykov et al., 2012] R package; where K ∈ {2, 5}, 
the number of subpopulations, p ∈ {2, 5, 10}, the number 
of variables, ω ∈ {0.01, 0.1}, the average overlap between 
components, which is described in Maitra and Melnykov 
[2010], and α ∈ {0.1, 0.2} the within scale, is used to generate 
Σϵ. To obtain the within covariance Σϵ the pooled covariance 
between all K between covariance structures is computed and 
then multiplied by α. Between- and within-source samples are 
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Fig. 5. A pairwise scatterplot of example data generated from a randomly 
generated 5-dimensional mixture model with 5 subpopulations, dots repre-
senting sources means, and gray lines representing trace object measurements 
from a given source. The 95% probability contours for mixtures are given. 

∗selected such that n ∈ {5, 15} and nw ∈ {5, 15} whereb ∗ nb = n ∗ p ∗ K. From each combination (K, p, ω, α, nb, nw),b 
100 datasets are simulated. An example from one of these 
randomly generated mixture models can be seen in Figure 5. 

E. Results of simulation 
We can see from Figure 6 that as the complexity of the 

problem increases by increasing the number of subpopulations, 
the dimensionality, the overlap between subpopulations, and 
the within-source covariance, then the accuracy of all methods 
decreases. We present four cases in Figure 6. Comparing our 
proposed method SSFMM to FMM and FMM+c note the 
following: 
• SSFMM has overall higher accuracy than FMM and 

FMM+C in almost all the cases. 
• SSFMM utilizes all the data, hence even with small 

within samples when the other two methods degrade, 
SSFMM performs well. 

• The difference in accuracy between the new SSFMM 
method and the other two methods increases as the 
complexity of the problem increases. 

F. Application to forensic glass data (Zadora’s) 
In this section, we ftted FMM, FMM+C, and SSFMM to 

the glass data presented in Section IV. The models are ftted on 
the training set for various values of K and acc(l) is computed 
based on the test set. This was repeated 25 times. See Figure 7 
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Fig. 6. Four examples of the (K, p, ω, α) combinations for the simulation 
study results. The accuracy of each method vs the within and between- sample 
sizes for SSFMM (black-solid), FMM+C (red-dashed), FMM (green-dotted) 
lines are given. 
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Fig. 7. Performance of the three models considered: FMM, FMM+C, and 
SSFMM for ranging the number of components. 

for the out-of-sample performance of the three approaches. 
Similar to the simulation study, in this glass data, we can see 
that for varying numbers of components, the SSFMM method 
outperforms the FMM+C. 

In addition, recall that we have three technical replicates 
within each fragment. We can assess if the proposed method 
consistently assigns technical replicates to the same subpop-

(l) (l) (l)ulation. Let Zl
i = {Ẑ Ẑ Ẑ } be the set of estimatedi1 , i2 , i3 

subpopulation memberships of the technical replicate of the re-
moved fragments belonging to the ith window in the test set for 
the lth model. Let Ci be the number of unique subpopulation 
memberships inPZ( 

i
l) . Then the comparison statistic is defned 

m1C̄(l)as = Ci. The results are shown in Figure 8. m i=1 
As the number of subpopulations increases we see overall 
all three approaches tend to assign replicates to more than 
one subpopulation. However, the SSFMM method produces 
the lowest number of subpopulations on average with smaller 
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variability. 

V. CONCLUSIONS 

The work in this report identifed that there could be 
an alarming amount of algorithmic bias towards a minority 
population as measured by rates of misleading evidence. The 
likelihood ratio methods available and widely used such as the 
Aitken et al. [2007] LR’s are susceptible to this algorithmic 
bias. The study of the effciency of these LR methods showed 
that both can be ineffcient depending on the existence of 
subpopulation structures and the number of sources in the 
background population. This suggests the need for fnding 
a robust LR method that is effcient and will mitigate the 
algorithmic bias observed. We proposed a mixture-based solu-
tion to model subpopulations in hierarchically structured data. 
The semi-supervised model was more accurate over random 
train test split validation. The semi-supervised approach also 
performs better at assigning the same membership to technical 
replicates of the same fragments. The smaller variability sup-
ports that the semi-supervised approach gives a more reliable 
model. More work is needed to implement the developed semi-
supervised mixture models into an LR. This line of work 
aligns with the current NIJ initiatives. Particularly, in a recent 
interview [National Institute of Justice, May 15, 2023] with 
the NIJ director Dr. La Vigne states: “Foster(ing) rigorous 
research to promote safer communities and more equitable 
justice system” ... where “... researchers should be intentional 
in examining potential structural inequalities that may generate 
disparate outcomes based on one’s gender, race, ethnicity, 
religion, sexual identity or citizenship status, regardless of 
research topic”. 
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