Since the use of standardized and robust analytical methods for the quantitative analysis of the elemental composition of glass fragments enables the characterization and comparison of glass as forensic evidence, this paper introduces a new R-based Shiny graphical user interface (GUI) to calculate calibrated likelihood ratios (LRs) using three (3) different background databases of glass composition.
We report, for the first time, a new vehicle survey glass database generated at Florida International University (FIU) generated from LA-ICP-MS analysis, a database comprised of a combination of casework and survey samples collected from solution-digestion ICP-MS analysis from the Federal Bureau of Investigation (FBI) Laboratory, and a previously reported casework sample database collected from LA-ICP-MS analysis at the Bundeskriminalamt (BKA) Laboratory. The LRs are calculated using a previously reported two-level multivariate kernel (MVK) model and calibrated using a previously described Pool Adjacent Violators (PAV) algorithm. The log LR (LLR) were calculated and compared to the match criterion recommended in the ASTM E2927-16e1 method, using these three background databases using a typical glass evidence case scenario. This paper also reports how the LLR values increase as the size of the background database increases, as expected. The R Shiny app and the new FIU vehicle background database are provided to researchers in the supplementary materials. (Publisher Abstract)
Downloads
Similar Publications
- Elucidation of the Effect of Solar Light on the Near-Infrared Excitation Raman Spectroscopy-Based Analysis of Fabric Dyes
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples
- Development and Validation of a Method for Analysis of 25 Cannabinoids in Oral Fluid and Exhaled Breath Condensate