Hemoglobin (Hb) is the iron-containing oxygen transport protein present in the red blood cells of vertebrates. Ancient DNA and forensic scientists are particularly interested in Hb reactions in the dry state, because both regularly encounter aged, dried bloodstains. The DNA in such stains may be oxidatively damaged and, in theory, may be deteriorated by the presence of Hb. The current study determined that oxygenated Hb (oxyHb) converts over time to oxidized Hb (metHb), but this happens more quickly in the dry state than in the hydrated state, as shown by monitoring stabilized oxyHb. In addition, dry state oxyHb converts into at least one other unknown species other than metHb. Although "free" iron was detectable as both Fe2+ and Fe3+ in dry and hydrated oxyHb and metHb, the amount of ions detected did not increase over time. There was no evidence that Hb becomes more prone to generating OH as it ages in either the hydrated or dry states. The study concludes that The Hb molecule in the dried state undergoes oxidative changes and releases reactive Fe(II) cations. These changes, however, do not appear to increase the ability of Hb to act as a more aggressive Fenton reagent over time. Nevertheless, the presence of Hb in the vicinity of DNA in dried bloodstains creates the opportunity for OH-induced oxidative damage to the deoxyribose sugar and the DNA nucleobases. 7 figures, 1 table, and 43 references (publisher abstract modified)
Downloads
Similar Publications
- Development and Evaluation of miRNA and mRNA Panels for Body Fluid Identification
- Examining the Relationship between Aptamer Complexity and Molecular Discrimination of a Low-Epitope Target
- Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence