After every interval of a 3-month period, 10 fibers were uniformly sampled from each cloth piece, and fluorescence microscopy was used to collect two-dimensional excitation and fluorescence spectra (2-D spectra) and three-dimensional (3D) excitation-emission matrices (EEMs). A significant loss of fluorescence intensity was observed upon fiber exposure to outdoor weathering conditions. For a comprehensive statistical data analysis and to be able to discriminate between any two single fibers weathered under different conditions, a multiway calibration algorithm known as discriminant unfolded partial least-squares (DU-PLS) method was applied to the exposed fibers. Results indicate that fluorescence spectroscopy combined with DU-PLS has the ability to appropriately classify and differentiate between any two pairs of dyed cotton or nylon fibers (acrylic in some cases) exposed to dry versus humid weather environments under different time intervals of exposure. These results provide the foundation for future studies that can contribute to a non-destructive approach capable of providing information on the weathering history of the fiber. (publisher abstract modified)
Downloads
Similar Publications
- DNA Purification in Microfluidic Systems for Clinical and Forensic Application
- Further Development of Raman Spectroscopy for Body Fluid Investigation: Forensic Identification, Limit of Detection, and Donor Characterization
- Forensic Discrimination of Dyed Hair Color: I. UV-Visible Microspectrophotometry