Circumstances of criminal activities involving radioactive materials may mean fiber evidence recovered from a crime scene could have been exposed to materials emitting ionizing radiation. The consequences of radiation exposed fibers on the result of the forensic analysis and interpretation is explored.
The effect of exposure to 1-1000 kGy radiation doses in natural and synthetic fibers was noticeable using comparative forensic examination methods, such as optical microscopy, microspectrophotometry, and thin-layer chromatography. Fourier transform infrared spectroscopy analysis showed no signs of radiation-induced chemical changes in any of the fiber structures. The outcome of the comparative methods highlights the risk of "false negatives" associated in comparing colors of recovered fibers that may have been exposed to unknown radiation doses. Consideration of such results supports the requirement to know the context, including the environmental conditions, as much as possible before undertaking a forensic fiber examination. (Published Abstract)
Downloads
Similar Publications
- Assessing the Strength of Trace Evidence Fracture Fits through a Comprehensive, Systematic and Quantifiable Approach
- Mitochondrial DNA Analysis by Denaturing High-Performance Liquid Chromatography for the Characterization and Separation of Mixtures in Forensic Samples
- The Collection, Preservation, and Processing of DNA Samples from Decomposing Human Remains for More Direct Disaster Victim Identification (DVI)