This study to characterize femur morphology in healthy infants and young children found that femur length, trochanter width, minimum diaphysis diameter, and growth plate width increased with age and weight, as did structural properties associated with fracture resistance.
This study, which aimed to characterize femur morphology in healthy infants and young children, found that femur length, trochanter width, minimum diaphysis diameter and growth plate width increased with age and weight. Structural properties associated with fracture resistance also increased with age and weight. Changes during rapid bone growth are important to understanding fracture risk in infants and young children as they transition to independent walking. Anterior–posterior (AP) radiographs of the femur from children age 0–3 years with no history of bone disease were obtained from two children's hospitals and one medical examiner's office. Femur morphological measures (bone length, minimum diaphysis diameter, growth plate width, and femur radius of curvature) and sectional structural measures were determined. Measures were described and compared based on subject age and mass. Relationships between measures and age and mass were evaluated. The 169 AP femur radiographs were obtained from 99 children (59.6% males, median age = 12.0 months, IQR = 0–27.5 months, median body weight = 10.0 kg, IQR = 4.4–15.6 kg). Femur length (rs = 0.97, p < 0.001; rs = 0.89, p < 0.001), trochanter width (rs = 0.86, p < 0.001; rs = 0.85, p < 0.001), minimum diaphysis diameter (rs = 0.91, p < 0.001; rs = 0.87, p < 0.001), and growth plate width (rs = 0.91, p < 0.001; rs = 0.84, p < 0.001) increased with age and weight, respectively. Cross-sectional area (rs = 0.87; rs = 0.86; p < 0.01), polar moment of inertia (rs = 0.91; rs = 0.87; p < 0.001), moment of inertia (rs = 0.91; rs = 0.87; p < 0.001), polar modulus (rs = 0.91; rs = 0.87; p < 0.001) and medullary canal diameter (rs = 0.83, p < 0.001; rs = 0.73, p < 0.001) at the minimum diaphysis also increased with age and weight, respectively.
Downloads
Similar Publications
- National Institute of Justice Fiscal Year 2023 Annual Report
- Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System
- Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design