This article presents research into possible genetic mutations that contribute to infant sudden deaths.
Two genetic variants in SCN5A, encoding the Nav1.5 Na+ channel α-subunit, were found in a 5-month-old girl who died suddenly in her sleep. The first variant is a missense mutation, resulting in an amino acid change (Q1832E), which has been described (but not characterized) in a patient with Brugada syndrome. The second is a nonsense mutation that produces a premature stop codon and a C-terminal truncation (R1944Δ). To investigate their functional relevance with patch clamp experiments in transfected HEK-293 cells. The Q1832E mutation drastically reduced Nav1.5 current density. The R1944Δ C-terminal truncation had negligible effects on Nav1.5 current density. Neither of the mutations affected the voltage dependence of steady activation and inactivation or influenced the late Na+ current or the recovery from inactivation. Biochemical and immunofluorescent approaches demonstrated that the Q1832E mutation caused severe trafficking defects. Polymerase chain reaction cloning and sequencing the victim's genomic DNA allowed us to determine that the two variants were in trans. The authors investigated the functional consequences by coexpressing Nav1.5(Q1832E) and Nav1.5(R1944Δ), which led to a significantly reduced current amplitude relative to wild-type. These sudden infant death syndrome (SIDS)-related variants caused a severely dysfunctional Nav1.5 channel, which was mainly due to trafficking defects caused by the Q1832E mutation. The decreased current density is likely to be a major contributing factor to arrhythmogenesis in Brugada syndrome and the sudden death of this SIDS victim. (Published Abstract Provided)
Downloads
Similar Publications
- Identification of Blunt Force Traumatic Fractures in Burned Bone
- Improving and Evaluating Computed Tomography and Magnetic Resonance Imaging in the Investigation of Fatalities Involving Suspected Head Trauma
- Large-scale Selection of Highly Informative Microhaplotypes for Ancestry Inference and Population Specific Informativeness