This article discusses the "necrobiome" concept and develops a framework that describes the decomposer communities and their interactions associated with plant and animal resource types within multiple ecosystems.
The article explains that decomposition contributes to global ecosystem function by contributing to nutrient recycling, energy flow, and limiting biomass accumulation. The decomposer organisms influencing this process form diverse, complex, and highly dynamic communities that often specialize on different plant or animal resources. Despite performing the same net role, there is a need to conceptually synthesize information on the structure and function of decomposer communities across the spectrum of dead plant and animal resources. A lack of synthesis has limited cross disciplinary learning and research in important areas of ecosystem and community ecology. The article then outlines the biotic structure and ecological functions of the necrobiome, along with how the necrobiome fits into a broader landscape and ecosystem context. The expanded necrobiome model provides a set of perspectives on decomposer communities across resource types, and conceptually unifies plant and animal decomposer communities into the same framework, while acknowledging key differences in processes and mechanisms. This framework is intended to raise awareness among researchers, and advance the construction of explicit, mechanistic hypotheses that further our understanding of decomposer community contributions to biodiversity, the structure and function of ecosystems, global nutrient recycling and energy flow. (publisher abstract modified)
Downloads
Similar Publications
- Skeletal Trauma in Forensic Anthropology: Improving the Accuracy of Trauma Analysis and Expert Testimony
- IS2aR, a Computational Tool to Transform Voxelized Reference Phantoms into Patient-specific Whole-body Virtual CTs for Peripheral Dose Estimation
- Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma