This article considers the rationale for and the availability of the C++ program ProDerAl, which was written to refine previously generated alignments using varying parameters for these problematic regions, and synthetic benchmarks show that this realignment can result in an order of magnitude fewer misaligned bases.
Current read-mapping software uses a singular specification of alignment parameters with respect to the reference. In the presence of varying reference structures (such as the repetitive regions of the human genome), alignments can be improved if those parameters are allowed vary. Nix users can retrieve the source from GitHub (https://github.com/Benjamin-Crysup/proderal.git). Windows binary available at https://github.com/Benjamin-Crysup/proderal/releases/download/v1.1/proderal.zip. (publisher abstract modified)
Downloads
Similar Publications
- Dyed Hair and Swimming Pools: The Influence of Chlorinated and Nonchlorinated Agitated Water on Surface-Enhanced Raman Spectroscopic Analysis of Artificial Dyes on Hair
- Extraction of Ignitable Liquid Residues by Dynamic Capillary Headspace Sampling and Comparison to the Carbon Strip Method
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples