This study documented the proliferation of novel synthetic opioids in postmortem investigations after core-structure scheduling for fentanyl-related substances.
New generations of novel synthetic opioids (NSOs) have emerged to fill a void in the illicit drug markets left by the decline in popularity of fentanyl analogs subsequent to core-structure scheduling of fentanyl-related substances in the United States and China. These new opioids include members of the 2-benzyl benzimidazole (e.g., isotonitazene, metonitazene, N-pyrrolidino etonitazene, protonitazene, etodesnitazene), benzimidazolone (e.g., brorphine), and cinnamylpiperazine (eg, AP-238, 2-methyl AP-237) subclasses. Novel synthetic opioids continue to be detected in opioid-related fatal overdoses, demonstrating the harms associated with exposure to these drugs. Between January 2020 and December 2021, 384 casework blood samples were reported by our laboratory to contain 1 or more of the prior listed 8 NSOs. Isotonitazene (n = 144), metonitazene (n = 122), and brorphine (n = 91) were the 3 most prevalent substances, with positivity for isotonitazene and brorphine peaking just before the announcement of emergency scheduling. These NSOs have been documented as significant drivers of drug mortality, and this case series described here highlights the challenges medical examiners and coroners face in staying current with emerging drugs. Challenges include regional differences, rapid turnover, short lifecycles, variable toxicology testing, and difficulty in assessing individual drug toxicity in polydrug cases. (Publisher abstract provided)
Downloads
Similar Publications
- IS2aR, a Computational Tool to Transform Voxelized Reference Phantoms into Patient-specific Whole-body Virtual CTs for Peripheral Dose Estimation
- Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma
- DNA Contamination, Degradation, Damage and Associated Microbiomes: A Comparative Analysis through Massive Parallel Sequencing and Electrophoresis