This article reports on a project that indicates laser-induced breakdown spectroscopy (LIBS) is a well-suited technique for the assessment of non-stoichiometry in yttrium aluminum garnet (YAG) ceramics and that the aluminum to yttrium ratio can be determined with a resolution of 0.3 mol percent, well within the phase boundaries of YAG.
Strict control of composition is of paramount importance for the reproducible fabrication of advanced ceramics. In particular, the preparation of high-grade transparent ceramics of definite line-compounds requires that the ratio of major constitutive elements be quantified with a precision better than a fraction of a mole percent to prevent the precipitation of secondary phases and the scattering of light. Such a requirement poses difficult challenges to most analytical methods, especially when applied to nearly-stoichiometric insulating phases. (publisher abstract modified)
Downloads
Similar Publications
- Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization-Mass Spectrometry
- Extinction Training Suppresses Activity of Fear Memory Ensembles across the Hippocampus and Alters Transcriptomes of Fear-encoding Cells
- Development Modeling of Phormia regina (Diptera: Calliphoridae)