This paper presents an innovative approach in which inorganic primer residues (IGSR) and organic residues (OGSR) from gunshots are collected on a single SEM stub sample, extracted in a two-step sequential process, and then characterized with a single instrument, LC coupled with triple quadrupole mass spectrometry.
Firearm discharge residue (FDR) contains organic and inorganic constituents that arise from the propellant; primer; and, to a lesser extent, the barrel, bullet, and casing. When a weapon is fired, residues are deposited on nearby surfaces with the hand being of primary forensic interest. Current methodology focuses on inorganic primer residues (IGSR) characterized using SEM/EDX. Advances in mass spectrometry have facilitated the detection of organic residues (OGSR) using variations of LC/MS and related ambient ionization methods. In the last few years, single sample collection has been used to characterize IGSR and OGSR via sample splitting and separate analysis by SEM and LC/MS. In the current research project, the key innovation is exploitation of host-guest and ligand chemistry to detect inorganic constituents. The precursor ion is the metal-ligand complex, and the product ion is the metal cation. Identification is confirmed via isotopic ratios. A controlled shooting study using 1–3 shots from a 9 mm and 0.38 revolver resulted in consistent detection of lead and EC down to a single shot discharge. Barium, calcium, and iron were also detected. The detection of antimony requires use of tartaric acid, a multi-dentate ligand. (publisher abstract modified)
Downloads
Similar Publications
- Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma
- Stage Transitions in Lucilia sericata and Phormia regina (Diptera: Calliphoridae) and Implications for Forensic Science
- Surface-enhanced Raman spectroscopy in Forensic Analysis