This study tested additional diagnostic feature-detection theory (DFT) predictions by manipulating the presence of facial information (i.e., the exterior region of the face) at both encoding and retrieval with a large between-subjects factorial design (N = 19,414).
The diagnostic feature-detection theory (DFT) of eyewitness identification is based on facial information that is diagnostic versus non-diagnostic of suspect guilt. It primarily has been tested by discounting non-diagnostic information at retrieval, typically by surrounding a single suspect showup with good fillers to create a lineup. In support of DFT and in replication of the literature, lineups yielded higher discriminability than showups. In support of encoding specificity, conditions that matched information between encoding and retrieval were generally superior to mismatch conditions. More importantly, study findings supported several DFT and encoding specificity predictions not previously tested, including that (a) adding non-diagnostic information will reduce discriminability for showups more so than lineups, and (b) removing diagnostic information will lower discriminability for both showups and lineups. These results have implications for police deciding whether to conduct a showup or a lineup, and when dealing with partially disguised perpetrators (e.g., wearing a hoodie). (publisher abstract modified)
Downloads
Similar Publications
- Solving Cases of Sudden Unexpected Natural Death in the Young through Comprehensive Postmortem Genetic Testing
- The Off-season of Dental Cementum Investigations. A Critical Appraisal of Season-of-death Prediction in Medico-legal Investigations
- An Electrochemical Perspective on Reaction Acceleration in Microdroplets