U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

The Analysis of Aerosolized Methamphetamine From E-cigarettes Using High Resolution Mass Spectrometry and Gas Chromatography Mass Spectrometry

NCJ Number
302581
Journal
Journal of Analytical Toxicology Volume: 43 Issue: 8 Dated: 2019 Pages: 592-599
Author(s)
R. I. Krakowiak; et al
Date Published
2019
Length
8 pages
Annotation

The goal of this study was to qualitatively identify the presence of methamphetamine in the aerosol produced by an e-cig and to quantitatively assess the effect voltage on the concentration of aerosolized methamphetamine.

Abstract

The use of electronic cigarettes (e-cigs) has expanded from a nicotine delivery system to a general drug delivery system. The internet is rife with websites, blogs and forums informing users how to modify e-cigs to deliver illicit drugs while maintaining optimal drug delivery of their device. In the current study, a KangerTech AeroTank electronic cigarette containing a 30, 60, or 120 mg/mL of methamphetamine in 50:50 propylene glycol: vegetable glycerin formulation was used to produce the aerosol. To qualitatively identify aerosolized methamphetamine, the aerosol was generated at 4.3 V, trapped in a simple glass trapping system, extracted using solid-phase microextraction (SPME), and analyzed by high-resolution Direct Analysis in Real Time AccuTOF™ Mass Spectrometry (DART-MS). To assess the effect of voltage on the concentration of aerosolized methamphetamine, the aerosol was generated at 3.9, 4.3 and 4.7 V, trapped and quantified using gas chromatography mass spectrometry (GC/MS). SPME-DART-MS and SPME-GC-MS demonstrated the aerosolization of methamphetamine. The concentration of aerosolized methamphetamine at 3.9, 4.3 and 4.7 V was not statistically different at 800 ± 600 ng/mL, 800 ± 600 ng/mL and 1,000 ± 800 ng/mL, respectively. The characterization of the vapors produced from e-liquids containing methamphetamine provides an understanding of the dose delivery dynamics of e-cigarettes. (publisher abstract modified)