In this study, researchers examine the rheological behavior of brain tissue.
In this article, researchers compare experimental data describing the uniaxial compression and relaxation of brain tissue to the predictions from a rheological model developed by Yarin and Kosmerl. A qualitative agreement between the model and experiments with swine brain tissue is confirmed, and the uniformly valid values (i.e., valid in all rheometric experiments without any change) of the rheological parameters are established. These are the values of the following four parameters: G (the shear modulus), κ (the bulk modulus), α (the dimensionless degree of hyperelasticity), and θ (the viscoelastic relaxation time). In addition, the present rheological model with the established rheological parameters is incorporated into a dynamic model of bullet penetration into brain tissue after a short-range shooting, when muzzle gases and/or air fill the bullet channel leading to its widening, wave propagation, fragmentation, and backspatter of brain tissue. This problem is of significant interest in forensic science because there is an urgent need to provide physics-informed models to reconstruct and analyze crime scenes. (Published Abstract Provided)
Downloads
Similar Publications
- DNA Purification in Microfluidic Systems for Clinical and Forensic Application
- Further Development of Raman Spectroscopy for Body Fluid Investigation: Forensic Identification, Limit of Detection, and Donor Characterization
- Post-burn and Post-blast Rapid Detection of Trace and Bulk Energetics by 3D-printed Cone Spray Ionization Mass Spectrometry