U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

SSR2: Sparse Signal Recovery for Single-Image Super-Resolution on Faces With Extreme Low Resolutions

NCJ Number
254136
Journal
Pattern Recognition Volume: 90 Dated: June 2019 Pages: 308-324
Author(s)
Ramzi Abiantun; Felix Juefei-Xu; Utsav Prabhu; Marios Savvides
Date Published
June 2019
Length
17 pages
Annotation

Since automatic face recognition in the wild still suffers from low-quality, low resolution, noisy, and occluded input images that can severely impact identification accuracy, this article presents a novel technique that improves the quality of such low-resolution face images beyond the current state of the art.

Abstract

The project modeled the correlation between high and low resolution faces in a multi-resolution pyramid and recovered the original structure of an un-seen extreme low-resolution face image. By exploiting domain knowledge of the structure of the input signal and using sparse recovery optimization algorithms, the project recovered a consistent sparse representation of the extreme low-resolution signal. The proposed super-resolution method is robust to noise and face alignment, and it can handle extreme low-resolution faces up to 16x magnification factor with just seven pixels between the eyes. Moreover, the formulation of the proposed algorithm enables simultaneous occlusion removal capability, a desirable property that other super-resolution algorithms do not possess. Most importantly, the project shows that the demonstrated method generalizes on real-world low-quality surveillance images. (publisher abstract modified)