Bayes factors are used to describe the strength of evidence that two crimes are linked. Using concepts from agglomerative hierarchical clustering, the Bayes factors for crime pairs are combined to provide similarity measures for comparing two crime series. This facilitates crime series clustering, crime series identification, and suspect prioritization. The ability of the proposed models to make correct linkages and predictions is demonstrated under a variety of real-world scenarios with a large number of solved and unsolved breaking-and-entering crimes; for example, a naive Bayes model for pairwise case linkage can identify 82 percent of actual linkages with a 5-percent false positive rate. For crime series identification, 74 percent-89 percent of the additional crimes in a crime series can be identified from a ranked list of 50 incidents. (publisher abstract modified)
A Statistical Approach to Crime Linkage
NCJ Number
255192
Journal
AMERICAN STATISTICIAN Volume: 70 Issue: 2 Dated: 2016 Pages: 152-165
Date Published
2016
Length
14 pages
Annotation
This article reports the development of a statistical approach to criminal linkage analysis that discovers and groups crime events that share a common offender and prioritizes suspects for further investigation.
Abstract