Information sources for this project were relevant literature reviews and selected findings from the project research group's previous research. Using the LC/MS method, researchers demonstrated that it is possible to detect IGSR and OGSR components from a single sample collected after the discharge of a single shot. A chromatographic method has been developed that enables the detection of the IGSR and OGSR compounds with separate injections on the same column, an Agilent Poroshell 120 PFP (2.7 mm x 2.1 mm x 50 mm, coupled with a Hamilton guard column, a PRP-X100 (2.1x50mm). The PFP is a relatively new perfluorobenzene phase that has shown the ability to separate many ionics and compounds amenable to reverse phase. This report advises that the proposed methodology could contribute to a revitalization of the analysis of firearm discharge residue (FDR) in the justice system. The instrumentation used is commonly available in forensic laboratories and is routinely used for toxicological assays. The loss of morphological information in the partial digestion methodology is offset by the ability to detect orthogonal data from the inorganic and organic constituents of FDR. The methodology is nearly ready to be deployed as a supplement to the existing scanning electron microscopy (SEM) methodology. 4 tables, 3 figures, and a listing of project dissemination products
Viable, Affordable, and Meaningful Integration of Organic and Inorganic Analysis of Firearms Discharge Residue
NCJ Number
254404
Date Published
June 2019
Length
11 pages
Annotation
This is the Final Report on the findings and methodology of a project with the goal of developing protocols that integrate gunshot residue (GSR) and OGSR analysis in ways that can easily be implemented by forensic laboratories with existing resources, instrumentation, and expertise.
Abstract